8 research outputs found

    The uncertainty of identity toolset:analysing digital traces for user profiling

    Get PDF
    People manage a spectrum of identities in cyber domains. Profiling individuals and assigning them to distinct groups or classes have potential applications in targeted services, online fraud detection, extensive social sorting, and cyber-security. This paper presents the Uncertainty of Identity Toolset, a framework for the identification and profiling of users from their social media accounts and e-mail addresses. More specifically, in this paper we discuss the design and implementation of two tools of the framework. The Twitter Geographic Profiler tool builds a map of the ethno-cultural communities of a person's friends on Twitter social media service. The E-mail Address Profiler tool identifies the probable identities of individuals from their e-mail addresses and maps their geographical distribution across the UK. To this end, this paper presents a framework for profiling the digital traces of individuals

    ReForm: A Tool for Rapid Requirements Formalization

    Get PDF
    Formal methods practices can sometimes be challenging to adopt in industrial environments. On the other hand, the need for formalization and verification in the design of complex systems is now more evident than ever. To the end of easing integration of formal methods in industrial model based system engineering workflows, UTRC Ireland has developed a tool aiming to render requirements formalization as effortless as possible to the industrial engineer. The developed approach is an end-to-end solution, starting with natural language requirements as input and going all the way down to auto-generated monitors in MATLAB / Simulink. We employ natural language processing and machine learning techniques for (semi-)automatic pattern extraction from requirements, which drastically reduces the required formalization workload for both legacy and new requirements. For monitor generation, we provide our own approach which outperforms existing state-of-the-art tools by orders of magnitude in some cases

    Privacy-preserving clinical decision support system using gaussian kernel-based classification

    Get PDF
    A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends toward remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients. However, the fact that these servers are third party and therefore potentially not fully trusted raises possible privacy concerns. In this paper, we propose a novel privacy-preserving protocol for a clinical decision support system where the patients' data always remain in an encrypted form during the diagnosis process. Hence, the server involved in the diagnosis process is not able to learn any extra knowledge about the patient's data and results. Our experimental results on popular medical datasets from UCI-database demonstrate that the accuracy of the proposed protocol is up to 97.21% and the privacy of patient data is not compromised

    Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud

    Get PDF
    Emerging cloud computing infrastructure replaces traditional outsourcing techniques and provides flexible services to clients at different locations via Internet. This leads to the requirement for data classification to be performed by potentially untrusted servers in the cloud. Within this context, classifier built by the server can be utilized by clients in order to classify their own data samples over the cloud. In this paper, we study a privacy-preserving (PP) data classification technique where the server is unable to learn any knowledge about clients' input data samples while the server side classifier is also kept secret from the clients during the classification process. More specifically, to the best of our knowledge, we propose the first known client-server data classification protocol using support vector machine. The proposed protocol performs PP classification for both two-class and multi-class problems. The protocol exploits properties of Pailler homomorphic encryption and secure two-party computation. At the core of our protocol lies an efficient, novel protocol for securely obtaining the sign of Pailler encrypted numbers

    User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption

    Get PDF
    Decentralized attribute-based encryption (ABE) is a variant of multi-authority based ABE whereby any attribute authority (AA) can independently join and leave the system without collaborating with the existing AAs. In this paper, we propose a user collusion avoidance scheme which preserves the user's privacy when they interact with multiple authorities to obtain decryption credentials. The proposed scheme mitigates the well-known user collusion security vulnerability found in previous schemes. We show that our scheme relies on the standard complexity assumption (decisional bilienar Deffie-Hellman assumption). This is contrast to previous schemes which relies on non-standard assumption (q-decisional Diffie-Hellman inversion)

    Time correlated anomaly detection based on inferences

    Full text link
    Anomaly detection techniques are used to find the presence of anomalous activities in a network by comparing traffic data activities against a "normal" baseline. Although it has several advantages which include detection of "zero-day" attacks, the question surrounding absolute definition of systems deviations from its "normal" behaviour is important to reduce the number of false positives in the system. This study proposes a novel multi-agent network-based framework known as Statistical model for Correlation and Detection (SCoDe), an anomaly detection framework that looks for timecorrelated anomalies by leveraging statistical properties of a large network, monitoring the rate of events occurrence based on their intensity. SCoDe is an instantaneous learning-based anomaly detector, practically shifting away from the conventional technique of having a training phase prior to detection. It does acquire its training using the improved extension of Exponential Weighted Moving Average (EWMA) which is proposed in this study. SCoDe does not require any previous knowledge of the network traffic, or network administrators chosen reference window as normal but effectively builds upon the statistical properties from different attributes of the network traffic, to correlate undesirable deviations in order to identify abnormal patterns. The approach is generic as it can be easily modified to fit particular types of problems, with a predefined attribute, and it is highly robust because of the proposed statistical approach. The proposed framework was targeted to detect attacks that increase the number of activities on the network server, examples which include Distributed Denial of Service (DDoS) and, flood and flash-crowd events. This paper provides a mathematical foundation for SCoDe, describing the specific implementation and testing of the approach based on a network log file generated from the cyber range simulation experiment of the industrial partner of this project

    Privacy-preserving clinical decision support system using Gaussian Kernel-based classification

    No full text
    A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends toward remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients. However, the fact that these servers are third party and therefore potentially not fully trusted raises possible privacy concerns. In this paper, we propose a novel privacy-preserving protocol for a clinical decision support system where the patients' data always remain in an encrypted form during the diagnosis process. Hence, the server involved in the diagnosis process is not able to learn any extra knowledge about the patient's data and results. Our experimental results on popular medical datasets from UCI-database demonstrate that the accuracy of the proposed protocol is up to 97.21% and the privacy of patient data is not compromised
    corecore